Transferrin receptor 2: evidence for ligand-induced stabilization and redirection to a recycling pathway.

نویسندگان

  • Martha B Johnson
  • Juxing Chen
  • Nicholas Murchison
  • Frank A Green
  • Caroline A Enns
چکیده

Transferrin receptor 2 (TfR2) is a homologue of transferrin receptor 1 (TfR1), the protein that delivers iron to cells through receptor-mediated endocytosis of diferric transferrin (Fe(2)Tf). TfR2 also binds Fe(2)Tf, but it seems to function primarily in the regulation of systemic iron homeostasis. In contrast to TfR1, the trafficking of TfR2 within the cell has not been extensively characterized. Previously, we showed that Fe(2)Tf increases TfR2 stability, suggesting that trafficking of TfR2 may be regulated by interaction with its ligand. In the present study, therefore, we sought to identify the mode of TfR2 degradation, to characterize TfR2 trafficking, and to determine how Fe(2)Tf stabilizes TfR2. Stabilization of TfR2 by bafilomycin implies that TfR2 traffics to the lysosome for degradation. Confocal microscopy reveals that treatment of cells with Fe(2)Tf increases the fraction of TfR2 localizing to recycling endosomes and decreases the fraction of TfR2 localizing to late endosomes. Mutational analysis of TfR2 shows that the mutation G679A, which blocks TfR2 binding to Fe(2)Tf, increases the rate of receptor turnover and prevents stabilization by Fe(2)Tf, indicating a direct role of Fe(2)Tf in TfR2 stabilization. The mutation Y23A in the cytoplasmic domain of TfR2 inhibits its internalization and degradation, implicating YQRV as an endocytic motif.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oligomerized transferrin receptors are selectively retained by a lumenal sorting signal in a long-lived endocytic recycling compartment

Cross-linking of surface receptors results in altered receptor trafficking in the endocytic system. To better understand the cellular and molecular mechanisms by which receptor cross-linking affects the intracellular trafficking of both ligand and receptor, we studied the intracellular trafficking of the transferrin receptor (TfR) bound to multivalent-transferrin (Tf10) which was prepared by ch...

متن کامل

Cargo-mediated regulation of a rapid Rab4-dependent recycling pathway.

Membrane trafficking is well known to regulate receptor-mediated signaling processes, but less is known about whether signaling receptors conversely regulate the membrane trafficking machinery. We investigated this question by focusing on the beta-2 adrenergic receptor (B2AR), a G protein-coupled receptor whose cellular signaling activity is controlled by ligand-induced endocytosis followed by ...

متن کامل

15-Deoxy-Δ12,14-Prostaglandin J2 Protects PC12 cells from LPS-Induced Cell Death Through Nrf2 pathway in PPAR-γ Dependent Manner

Introduction: The inflammatory response requires a coordinated integration of various signaling pathway including cyclooxygenase (COX). COX catalyzes the formation of prostaglandins from arachidonic acid. Among prostaglandins, 15-Deoxy-D12, 14-prostaglandin J2 (15d-PGJ2), an endogenous ligand of Peroxisome proliferator-activated receptor-gamma (PPAR-γ), has been demonstrated to have anti-inflam...

متن کامل

Rapid endocytosis of the transferrin receptor in the absence of bound transferrin

The rate of endocytosis of transferrin receptors, occupied or unoccupied with transferrin, was measured on the cell line K562. At 37 degrees C, receptors, radioiodinated on the cell surface at 4 degrees C, were internalized equally rapidly in the presence or absence of transferrin. In both cases, 50% of the labeled receptors became resistant to externally added trypsin in 5 min. An antitransfer...

متن کامل

Synaptic activity regulates AMPA receptor trafficking through different recycling pathways

Changes in glutamatergic synaptic strength in brain are dependent on AMPA-type glutamate receptor (AMPAR) recycling, which is assumed to occur through a single local pathway. In this study, we present evidence that AMPAR recycling occurs through different pathways regulated by synaptic activity. Without synaptic stimulation, most AMPARs recycled in dynamin-independent endosomes containing the G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 18 3  شماره 

صفحات  -

تاریخ انتشار 2007